Lead-Containing Paint & Hazardous Building Materials Survey

City of Dallas – Decommissioned Fire Station #44
4114 Frank Street
Dallas, Texas 75210

July 12, 2018
Terracon Project No. 94187308

Prepared for:
City of Dallas
Dallas, Texas

Prepared by:
Terracon Consultants, Inc.
Dallas, Texas
July 12, 2018

City of Dallas
Equipment and Building Services Department
3202 Canton Street
Dallas, Texas 75226

Attn: Mr. Ghassan (Gus) Aswad, P.E.
Project Coordinator III
P: (214) 671-6821
C: (214) 205-1682
E: ghassan.aswad@dallascityhall.com

Re: Lead-Containing Paint & Hazardous Building Materials Survey
City of Dallas - Decommissioned Fire Station #44
4114 Frank Street
Dallas, Texas 75210
Terracon Project No. 94187308

Dear Mr. Aswad:

The purpose of this report is to present the results of a lead-containing paint (LCP) and hazardous building materials (HBM) survey performed on June 5, 2018 at the City of Dallas - Decommissioned Fire Station #44 located at 4114 Frank Street in Dallas, Texas. This survey was conducted in accordance with the Work Order Contract for General Non-Engineering Environmental Services dated November 21, 2016 and Terracon Proposal No. P94187031 dated May 1, 2018. We understand this survey was requested due to the planned renovation of Decommissioned Fire Station #44.

Terracon appreciates the opportunity to provide this service to the City of Dallas. If you have any questions regarding this report or need assistance with abatement oversight prior to renovation of this structure, please contact the undersigned at (214) 630-1010.

Sincerely,
Terracon Consultants, Inc.

Matthew R. Mooney
Project Manager
TDSHS Lead Risk Assessor Certification No. 2070895

Greg Calhoun
Senior Associate
Department Manager - Asbestos, Lead & IH Services
TABLE OF CONTENTS

EXECUTIVE SUMMARY ... i

1.0 **INTRODUCTION** .. 1

1.1 Project Objective ... 1

2.0 **BUILDING DESCRIPTION** ... 1

3.0 **LEAD-CONTAINING PAINT FIELD ACTIVITIES** ... 2

3.1 Site Limitations ... 2

3.2 Methodology and Analysis .. 2

4.0 **HAZARDOUS BUILDING MATERIALS** .. 3

4.1 Polychlorinated Biphenyls (PCBs) ... 3

4.2 Mercury (Hg) ... 3

4.3 Chlorofluorocarbon (CFC) ... 4

4.4 Batteries ... 4

4.5 Radioactive Sources .. 4

5.0 **REGULATORY OVERVIEW** .. 4

5.1 Lead-Based Paint ... 4

6.0 **FINDINGS AND RECOMMENDATIONS** .. 6

6.1 Lead-Based Paint ... 6

6.2 Hazardous Building Materials .. 8

7.0 **GENERAL COMMENTS** .. 9

APPENDIX A LEAD SURVEY SAMPLE SUMMARY

APPENDIX B LEAD ANALYTICAL LABORATORY DATA

APPENDIX C SITE PHOTOGRAPHS

APPENDIX D SAMPLE LOCATION DRAWING

APPENDIX E LICENSES AND CERTIFICATIONS
EXECUTIVE SUMMARY

Terracon Consultants, Inc. (Terracon) conducted a lead-containing paint (LCP) and hazardous building materials (HBM) survey at the City of Dallas - Decommissioned Fire Station #44 located at 4114 Frank Street in Dallas, Texas. The objective of the survey was to identify the presence and location of accessible LCP and HBM on the interior and exterior of Decommissioned Fire Station #44. Based on information provided by the client, we understand this survey was requested due to the planned renovation of the structure.

The survey was conducted by a TDSHS certified Lead Risk Assessor. Thirty-seven (37) samples of representative paint coatings applied to the subject surfaces were collected for analysis. Asbestos in concentrations of more than one percent (>1%) was identified in the following materials:

The following materials were determined to contain concentrations of lead above the LOD for the analytical method performed:

- Paint (tan) on wood crown molding (Sample Pb-03)
- Paint (brown) on metal door frame (Sample Pb-04)
- Paint (dark brown) on wood door (Sample Pb-05)
- Paint (tan) on drywall ceiling (Sample Pb-08)
- Paint (brown) on wood paneling (Sample Pb-10)
- Paint (brown) on wood roll-up door frame (Sample Pb-12)
- Paint (brown) on wood ceiling deck (Sample Pb-14)
- Paint (brown) on structural steel (Sample Pb-15)
- Paint (red) on wood trim (Sample Pb-18)
- Paint (white) on wood trim (Sample Pb-19)
- Paint (black) on metal trim (Sample Pb-20)
- Paint (dark brown) on metal door (Sample Pb-24)
- Exterior paint (dark brown) on metal door frame (Sample Pb-25)
- Exterior paint (brown) on wood overhang (Sample Pb-26)
- Exterior paint (white) on metal window frames (Sample Pb-29)
- Exterior paint (dark brown) on metal downspouts (Sample Pb-30)
- Exterior paint (yellow) on metal siren box (Sample Pb-31)
- Exterior paint (beige) on metal bollards (Sample Pb-32)
- Paint (off-white) on wood lockers (Sample Pb-35)
- Paint (brown) on drywall (Sample Pb-37)

The remaining materials were determined to contain concentrations below the limit of detection for the analytical method performed.
The OSHA Lead Standard for Construction (29 CFR 1926.62) applies to construction work where an employee may be occupationally exposed to lead. All work related to construction, alteration, or repair (including painting and decorating) is included. The lead-in-construction standard applies to any detectable concentration of lead in paint. OSHA considers paint containing any level of lead above the analytical method’s LOD a potential hazard which should be communicated to any employees or contractors who may disturb the materials in the course of their assigned work.

Renovation activities impacting those materials with identified lead-containing paint will be subject to OSHA regulations (29 CFR 1926.62 - Lead Exposure in Construction). The OSHA regulation defines specific training requirements, engineering controls and working practices for construction personnel subject to this standard. There are also federal and state regulations, which require characterization of demolition debris to determine proper disposal procedures.

The Environmental Protection Agency (EPA) and the Texas Commission on Environmental Quality (TCEQ) have established regulations which require characterization of demolition debris to determine proper disposal procedures.

Waste which results in a lead or chromium content in the leachate of greater than or equal to five parts per million (5 ppm) or five milligrams/liter (5 mg/l) is considered hazardous and should be handled by the remediation contractor and disposed of according to EPA and TCEQ regulations at a hazardous waste permitted landfill, with proper generator labels and a hazardous waste manifest. Waste which results in a lead or chromium content in the leachate of less than 5 ppm or 5 mg/l can be classified as Class II non-hazardous waste and disposed of as general construction debris.
LEAD-CONTAINING PAINT & HAZARDOUS BUILDING MATERIALS SURVEY
City of Dallas - Decommissioned Fire Station #44
4114 Frank Street
Dallas, Texas 75210
Terracon Project No. 94187308

1.0 INTRODUCTION

Terracon Consultants, Inc. (Terracon) conducted a lead-containing paint (LCP) and hazardous building materials (HBM) survey on June 5, 2018 at the City of Dallas - Decommissioned Fire Station #44 located at 4114 Frank Street in Dallas, Texas. This survey was conducted in accordance with the Work Order Contract for General Non-Engineering Environmental Services dated November 21, 2016 and Terracon Proposal No. P94187031 dated May 1, 2018. Interior and exterior building components were surveyed and homogeneous areas of LCP and HBM were visually identified and documented. Although reasonable effort was made to survey accessible suspect materials, additional suspect but unsampled materials could be located in walls, in voids or in other concealed areas.

1.1 Project Objective

The objective of the survey was to identify the presence and location of accessible LCP and HBM on the interior and exterior of Decommissioned Fire Station #44. Based on information provided by the client, we understand this survey was requested due to the planned renovation of the structure.

2.0 BUILDING DESCRIPTION

The subject building is a single-story brick frame structure constructed on a concrete slab foundation measuring approximately 5,572 square feet constructed circa 1957. The interior of the building consists of a truck bay, sleeping quarters, a day room, kitchen, restrooms, storage rooms, and an office. The floors are unfinished concrete, vinyl floor tile, and ceramic floor tile on a concrete substrate. The interior walls are finished with textured concrete masonry unit (CMU) block and ceramic wall tile. The ceilings are finished with wood, textured drywall and unfinished drywall/joint compound. Spray-on fireproofing was not noted on the wood deck on the day of the survey.
3.0 LEAD-CONTAINING PAINT FIELD ACTIVITIES

The lead paint testing was conducted by Mr. Matthew Mooney, a TDSHS certified Lead Risk Assessor (Certification No. 2070895). A copy of Mr. Mooney’s certification is attached in Appendix E.

3.1 Site Limitations

It should be noted that suspect LCP other than those identified during the sampling may be present in the building. Based on information provided by the client, we understand the building is proposed for renovation. Suspect LCP which have not been specifically evaluated should be tested prior to disturbance of the material. If additional suspect LCP is identified during the renovation process, those materials should be assumed to LCP until testing can be performed to determine whether lead is present in the paint.

3.2 Methodology and Analysis

The lead paint testing was conducted by scraping approximately 2 square inches of paint from the supporting substrate. Thirty-seven (37) samples of representative paint coatings applied to the subject surfaces were collected for analysis. The samples were submitted to Environmental Hazards Services, LLC of Richmond, Virginia, a National Environmental Laboratory Accreditation Program (NELAP) and American Industrial Hygiene Association (AIHA) accredited laboratory (NELAP Certificate No. T104704248-11-3; AIHA Lab ID No. 100420). The analysis was performed by Flame Atomic Absorption Spectrophotometry (EPA method SW846 7000B). Sample results reported below the limit of detection (LOD) may contain lead at a concentration below the analytically defined LOD. A summary of the lead based paint samples and analysis is included in Appendix A. Laboratory analytical results are included in Appendix B. Photographs of LBP samples are included in Appendix C.

No materials were assumed to be LCP. Any inaccessible areas that contain painted surfaces should be tested when access permits or should be assumed to be positive for LCP.

4.3 Visual Assessment

Terracon conducted a visual assessment of each area where environmental sampling was conducted. The visual assessment included evaluating the condition of buildings, and condition of painted surfaces. The information gathered in the visual assessment was utilized in determining the collection points of environmental samples collected.
4.0 HAZARDOUS BUILDING MATERIALS

The hazardous building materials assessment was conducted by Ms. Shelby Ball.

Materials such as PCBs, Hg, CFCs, nickel-cadmium and lead-acid, batteries and radioactive sources can be found in building components. These materials are considered environmental hazards and require special precautions if they will be removed in association with the renovation to prevent their entry into the environment. On occasion, manufacturers will label the equipment regarding the presence or absence of a hazardous material. To assess for these hazards, some building components were partially disassembled to locate a manufacturer’s label.

4.1 Polychlorinated Biphenyls (PCBs)

PCBs range from clear, oily liquids to white or yellowish waxy solids, depending on the degree of chlorination. They are stable, thermoplastic and non-flammable materials that found chief use in insulation for electric cables and wires in the production of electric condensers and additives for extreme pressure lubricants. Light ballasts can contain approximately one ounce of the toxic substance. The transportation, disposal and spill clean-up of PCB-containing ballasts is regulated by the Toxic Substances Control Act (TSCA), which is found in 40 Code of Federal Regulations (CFR) Part 261.

Terracon conducted a visual assessment of light fixtures to characterize PCB content. Typically, ballasts manufactured prior to 1979 are presumed to contain PCBs unless clearly marked as containing “No PCBs”. Ballasts that do not exhibit a “No PCBs” label are presumed to be PCB-containing. Transformers sometimes contain mineral oil which may contain minor amounts of PCB and could be considered “PCB contaminated” (PCB content of 50-499 ppm).

4.2 Mercury (Hg)

Metallic Hg is a silver-white liquid at room temperature. Elemental and inorganic Hg compounds are used in manufacturing scientific instruments, electric equipment, Hg vapor lamps and high intensity discharge (HID) lights. Hg is considered a hazardous material due to its ability to bioaccumulate within the environment. Recycling Hg-containing components reduces the load of Hg entering the environment.

Terracon conducted a representative visual assessment of potential Hg-containing equipment.
4.3 Chlorofluorocarbon (CFC)

A CFC is an organic compound that consists of carbon, hydrogen, chlorine, and fluorine. Many CFCs have been widely used as refrigerants, propellants, and solvents. CFCs are believed to cause depletion of the atmospheric ozone layer.

Terracon conducted a representative visual assessment of potential CFC-containing equipment.

4.4 Batteries

Batteries containing nickel-cadmium and lead-acid can be found in emergency lighting, exit signs, and alarm systems. The nickel-cadmium and lead-acid in these batteries are considered toxic. Smoke detectors, motion sensors, security cameras, emergency lighting, and exit signs and have the potential to contain batteries.

4.5 Radioactive Sources

There are several types of smoke detectors and fire alarms; ionization chamber and photoelectric smoke detectors are the two most common types available commercially. Ionization chamber smoke detectors contain a small amount of radioactive material encapsulated in a metal chamber. Typically, the radioactive material is a composite of americium-241.

5.0 REGULATORY OVERVIEW

5.1 Lead-Based Paint

As a point of reference, regulatory agencies (HUD, TDSHS) have defined LBP as a paint or other surface coating that contain ≥5,000 parts per million (ppm) of lead or more than 0.5% of lead by weight for buildings that meet the definition of target housing or child occupied facilities. OSHA, however, defines LCP as a paint which contains lead, regardless of the concentration.

The OSHA Lead Standard for Construction (29 CFR 1926.62) applies to construction work where an employee may be occupationally exposed to lead. All work related to construction, alteration, or repair (including painting and decorating) is included. The lead-in-construction standard applies to any detectable concentration of lead in paint. OSHA considers paint containing any level of lead above the analytical method detection limit a potential hazard which should be communicated to any employees or contractors who may disturb the materials in the course of their assigned work.
5.2 Hazardous Building Materials

Polychlorinated Biphenyls (PCBs)

The transportation, disposal and spill clean-up of PCB-containing ballasts is regulated by the Toxic Substances Control Act (TSCA), which is found in 40 Code of Federal Regulations (CFR) Part 261. Ballasts that do not exhibit a “No PCBs” label are presumed to be PCB-containing. Transformers sometimes contain mineral oil which may contain minor amounts of PCB and could be considered “PCB contaminated” (PCB content of 50-499 ppm).

Mercury (Hg)

The Resource Conservation and Recovery Act (RCRA) requires that EPA manage hazardous wastes, including mercury wastes, from their generation, through storage and transportation, to their final treatment and disposal. Before these wastes can be disposed, they must meet EPA’s treatment and recycling standards. Mercury-containing household hazardous waste, and waste generated in very small quantities, are exempt from some RCRA hazardous waste requirements.

Chlorofluorocarbon (CFC)

The disposal of CFC-containing equipment is regulated under Section 608 of the Clean Air Act and EPA regulations (40 CFR 82, Subparts A and F). If this equipment will be removed from the site for disposal, the suspect CFCs (refrigerants) should be removed by a licensed HVAC technician for disposal by an EPA-certified refrigerant reclaimer.

Batteries

40 CFR section 273.9 defines a battery as a device consisting of one or more electrically connected electrochemical cells which is designed to receive, store, and deliver electric energy. An electrochemical cell is a system consisting of an anode, cathode, and an electrolyte, plus such connections (electrical and mechanical) as may be needed to allow the cell to deliver or receive electrical energy. The term battery also includes an intact, unbroken battery from which the electrolyte has been removed.

Some batteries meet the above definition but are not universal wastes. These include spent lead-acid batteries that are being managed under the requirements of 40 CFR part 266 subpart G; batteries that are not waste because they have not been discarded; and batteries that are not hazardous waste. See 40 CFR section 273.2 for more information about universal waste batteries.
In general, materials managed as universal waste can be stored for a year and are not required to be shipped with a manifest. In addition, universal wastes do not need to be counted toward a generator’s category for the purpose of determining whether it is a very small quantity generator, small quantity generator, or large quantity generator. The universal waste regulations do require that the materials be managed in a way to prevent releases to the environment and tailors those requirements to each type of universal waste (for small quantity handlers and for large quantity handlers). Finally, the standards also include labeling, a requirement to respond to releases, and transport to a facility that is permitted or otherwise designated for receiving hazardous waste, like a recycler.

Radioactive Sources

Smoke detectors, vacuum tubes, and other specific items are exempt from licensing in the Texas Radiation Control rules (25 TAC Chapter 289). The Texas Department of State Health Services (DSHS) Radiation Control Program administers these rules and can be disposed of as industrial or municipal solid waste.

6.0 FINDINGS AND RECOMMENDATIONS

6.1 Lead-Containing Paint

The following materials were determined to contain concentrations of lead above the LOD for the analytical method performed:

- Paint (tan) on wood crown molding (Sample Pb-03)
- Paint (brown) on metal door frame (Sample Pb-04)
- Paint (dark brown) on wood door (Sample Pb-05)
- Paint (tan) on drywall ceiling (Sample Pb-08)
- Paint (brown) on wood paneling (Sample Pb-10)
- Paint (brown) on wood roll-up door frame (Sample Pb-12)
- Paint (brown) on wood ceiling deck (Sample Pb-14)
- Paint (brown) on structural steel (Sample Pb-15)
- Paint (red) on wood trim (Sample Pb-18)
- Paint (white) on wood trim (Sample Pb-19)
- Paint (black) on metal trim (Sample Pb-20)
- Paint (dark brown) on metal door (Sample Pb-24)
- Exterior paint (dark brown) on metal door frame (Sample Pb-25)
- Exterior paint (brown) on wood overhang (Sample Pb-26)
- Exterior paint (white) on metal window frames (Sample Pb-29)
- Exterior paint (dark brown) on metal downspouts (Sample Pb-30)
- Exterior paint (yellow) on metal siren box (Sample Pb-31)
Exterior paint (beige) on metal bollards (Sample Pb-32)
Paint (off-white) on wood lockers (Sample Pb-35)
Paint (brown) on drywall (Sample Pb-37)

The remaining materials were determined to contain concentrations below the limit of detection for the analytical method performed.

The OSHA Lead Standard for Construction (29 CFR 1926.62) applies to construction work where an employee may be occupationally exposed to lead. All work related to construction, alteration, or repair (including painting and decorating) is included. The lead-in-construction standard applies to any detectable concentration of lead in paint. OSHA considers paint containing any level of lead above the analytical method's LOD a potential hazard which should be communicated to any employees or contractors who may disturb the materials in the course of their assigned work.

Renovation activities impacting those materials with identified lead-containing paint will be subject to OSHA regulations (29 CFR 1926.62 - Lead Exposure in Construction). The OSHA regulation defines specific training requirements, engineering controls and working practices for construction personnel subject to this standard. There are also federal and state regulations, which require characterization of demolition debris to determine proper disposal procedures.

The Environmental Protection Agency (EPA) and the Texas Commission on Environmental Quality (TCEQ) have established regulations which require characterization of demolition debris to determine proper disposal procedures.

Waste which results in a lead or chromium content in the leachate of greater than or equal to five parts per million (5 ppm) or five milligrams/liter (5 mg/l) is considered hazardous and should be handled by the remediation contractor and disposed of according to EPA and TCEQ regulations at a hazardous waste permitted landfill, with proper generator labels and a hazardous waste manifest. Waste which results in a lead or chromium content in the leachate of less than 5 ppm or 5 mg/l can be classified as Class II non-hazardous waste and disposed of as general construction debris.
6.2 Hazardous Building Materials

PCB-, Hg-, CFC-, battery- and radioactive source-containing building components were quantified where accessible and are listed by building in the table below:

<table>
<thead>
<tr>
<th>Hazardous Materials Assessment</th>
<th>Fire Station Building</th>
</tr>
</thead>
<tbody>
<tr>
<td>“No PCBs” Light Ballasts</td>
<td>34</td>
</tr>
<tr>
<td>“PCBs” Light Ballasts</td>
<td>2</td>
</tr>
<tr>
<td>Fluorescent light bulbs</td>
<td>83 – Hg</td>
</tr>
<tr>
<td></td>
<td>5 – Non-Hg</td>
</tr>
<tr>
<td>Thermostats</td>
<td>--</td>
</tr>
<tr>
<td>Transformers</td>
<td>--</td>
</tr>
<tr>
<td>Compactors</td>
<td>--</td>
</tr>
<tr>
<td>Cardboard bailers</td>
<td>--</td>
</tr>
<tr>
<td>Hg vapor lights</td>
<td>--</td>
</tr>
<tr>
<td>HID lights</td>
<td>2</td>
</tr>
<tr>
<td>Freezers</td>
<td>--</td>
</tr>
<tr>
<td>Refrigerators</td>
<td>--</td>
</tr>
<tr>
<td>Walk-in coolers</td>
<td>--</td>
</tr>
<tr>
<td>Soda Machines/Vending Machine</td>
<td>--</td>
</tr>
<tr>
<td>Ice machines</td>
<td>--</td>
</tr>
<tr>
<td>Water fountains</td>
<td>1</td>
</tr>
<tr>
<td>A/C units</td>
<td>1 Exterior Unit</td>
</tr>
<tr>
<td>Emergency lights</td>
<td>--</td>
</tr>
<tr>
<td>Exit signs</td>
<td>--</td>
</tr>
<tr>
<td>Alarm systems</td>
<td>--</td>
</tr>
<tr>
<td>Security Camera/Motion Detector</td>
<td>--</td>
</tr>
<tr>
<td>Smoke detectors</td>
<td>1</td>
</tr>
<tr>
<td>Fire alarms</td>
<td>--</td>
</tr>
<tr>
<td>Air Fresheners</td>
<td>--</td>
</tr>
</tbody>
</table>
Lead-Containing Paint & Hazardous Building Materials Survey
City of Dallas - Decommissioned Fire Station #44 ■ 4114 Frank Street, Dallas, Texas
July 12, 2018 ■ Terracon Project No. 94187308

Terracon observed eighty-three (83) Hg-containing fluorescent light bulbs in the building and two (2) HID lights on the building exterior. If these bulbs will be removed from the site for disposal, the suspect bulbs should be recovered by a qualified firm that recovers/recycles Hg-containing fluorescent light bulbs and HID lights.

Terracon observed two (2) ballasts in the corridor that could not be disassembled to check for labeling that would identify these ballasts as containing “No PCBs”. Terracon assumes these ballasts to contain PCB’s. The transportation, disposal and spill clean-up of PCB-containing ballasts is regulated by 40 CFR Part 761 of the Toxic Substances Control Act (TSCA). If this equipment will be removed from the site for disposal, the suspect ballasts should be recovered by a qualified recycling firm that recovers/recycles PCB-containing ballasts.

Terracon observed one (1) water fountain in the corridor and one (1) exterior HVAC unit; in the absence of “No CFCs” labelling, this equipment is suspected of containing CFCs. The disposal of CFC-containing equipment is regulated under Section 608 of the Clean Air Act and EPA regulations (40 CFR 82, Subparts A and F). If this equipment will be removed from the site for disposal, the suspect CFCs (refrigerants) should be removed by a licensed HVAC technician for disposal by an EPA-certified refrigerant reclamer.

Terracon observed one (1) smoke detector in the day room that contains a battery and a radioactive source. If this equipment will be removed from the site for disposal, the suspect smoke detector should be recovered by a qualified recycling firm that recovers/recycles smoke detectors containing batteries and radioactive sources.

7.0 GENERAL COMMENTS

This LBP and HBM survey was conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions in the same locale. The results, findings, conclusions and recommendations expressed in this report are based on conditions observed during our survey of Decommissioned Fire Station #44. The information contained in this report is relevant to the date on which this survey was performed, and should not be relied upon to represent conditions at a later date. This report has been prepared on behalf of and exclusively for use by City of Dallas for specific application to their project as discussed. This report is not a bidding document. Contractors or consultants reviewing this report must draw their own conclusions regarding further investigation or remediation deemed necessary. Terracon does not warrant the work of regulatory agencies, laboratories or other third parties supplying information which may have been used in the preparation of this report. No warranty, express or implied is made.
Lead Survey Sample Summary

City of Dallas - Decommissioned Fire Station #44
4114 Frank Street
Dallas, Texas 75210
Terracon Project No. 94187308

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Location</th>
<th>Component</th>
<th>Lead Concentration* (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-01</td>
<td>Day Room – West</td>
<td>Paint (off-white) on CMU</td>
<td><39</td>
</tr>
<tr>
<td>Pb-02</td>
<td>Day Room – West</td>
<td>Paint (brown) on CMU</td>
<td><47</td>
</tr>
<tr>
<td>Pb-03</td>
<td>Day Room – West</td>
<td>Paint (tan) on wood crown molding</td>
<td>300</td>
</tr>
<tr>
<td>Pb-04</td>
<td>West Kitchen Entry</td>
<td>Paint (brown) on metal door frame</td>
<td>88</td>
</tr>
<tr>
<td>Pb-05</td>
<td>North Kitchen Entry</td>
<td>Paint (dark brown) on wood door</td>
<td>1100</td>
</tr>
<tr>
<td>Pb-06</td>
<td>Phone Room Entry</td>
<td>Paint (brown) on wood door</td>
<td><41</td>
</tr>
<tr>
<td>Pb-07</td>
<td>Restroom</td>
<td>Paint (beige) on metal stalls</td>
<td><190</td>
</tr>
<tr>
<td>Pb-08</td>
<td>East Mechanical Room</td>
<td>Paint (tan) on drywall ceiling</td>
<td>68</td>
</tr>
<tr>
<td>Pb-09</td>
<td>Mechanical Room Entry</td>
<td>Paint (brown) on wood trim</td>
<td><41</td>
</tr>
<tr>
<td>Pb-10</td>
<td>Apparatus Bay Outside Watch Station</td>
<td>Paint (brown) on wood paneling</td>
<td>60</td>
</tr>
<tr>
<td>Pb-11</td>
<td>Apparatus Bay Entry</td>
<td>Paint (brown) on wood roll-up door</td>
<td><42</td>
</tr>
<tr>
<td>Pb-12</td>
<td>Apparatus Bay Entry</td>
<td>Paint (brown) on wood roll-up door frame</td>
<td>210</td>
</tr>
<tr>
<td>Pb-13</td>
<td>South Apparatus Bay</td>
<td>Paint (red) on CMU</td>
<td><40</td>
</tr>
<tr>
<td>Pb-14</td>
<td>North Apparatus Bay</td>
<td>Paint (brown) on wood ceiling deck</td>
<td>240</td>
</tr>
<tr>
<td>Pb-15</td>
<td>North Apparatus Bay</td>
<td>Paint (brown) on structural steel</td>
<td>380</td>
</tr>
<tr>
<td>Pb-16</td>
<td>Electrical Room Entry</td>
<td>Paint (black) on metal door frame</td>
<td><36</td>
</tr>
<tr>
<td>Pb-17</td>
<td>Electrical Room</td>
<td>Paint (blue) on wood shelving</td>
<td><50</td>
</tr>
<tr>
<td>Pb-18</td>
<td>Corridor – Southwest</td>
<td>Paint (red) on wood trim</td>
<td>450</td>
</tr>
<tr>
<td>Pb-19</td>
<td>Corridor – Northwest</td>
<td>Paint (white) on wood trim</td>
<td>190</td>
</tr>
<tr>
<td>Pb-20</td>
<td>Apparatus Bay – Southeast</td>
<td>Paint (black) on metal trim</td>
<td>230</td>
</tr>
</tbody>
</table>
APPENDIX A

LEAD SURVEY SAMPLE SUMMARY

City of Dallas - Decommissioned Fire Station #44
4114 Frank Street
Dallas, Texas 75210
Terracon Project No. 94187308

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Location</th>
<th>Component</th>
<th>Lead Concentration* (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-21</td>
<td>Phone Room</td>
<td>Paint (blue) on CMU</td>
<td><43</td>
</tr>
<tr>
<td>Pb-22</td>
<td>Phone Room</td>
<td>Paint (white) on CMU</td>
<td><39</td>
</tr>
<tr>
<td>Pb-23</td>
<td>Locker Room Entry</td>
<td>Exterior paint (red) on metal door</td>
<td><45</td>
</tr>
<tr>
<td>Pb-24</td>
<td>Locker Room Exterior Entry</td>
<td>Exterior paint (dark brown) on metal door</td>
<td>180</td>
</tr>
<tr>
<td>Pb-25</td>
<td>Locker Room Exterior Entry</td>
<td>Exterior paint (dark brown) on metal door frame</td>
<td>1500</td>
</tr>
<tr>
<td>Pb-26</td>
<td>Front Porch</td>
<td>Exterior paint (dark brown on wood overhang)</td>
<td>570</td>
</tr>
<tr>
<td>Pb-27</td>
<td>Apparatus Bay Exterior Entry</td>
<td>Exterior paint (brown) on wood soffit and trim</td>
<td><46</td>
</tr>
<tr>
<td>Pb-28</td>
<td>Apparatus Bay Exterior Entry</td>
<td>Exterior paint (red) on wood roll-up doors</td>
<td><49</td>
</tr>
<tr>
<td>Pb-29</td>
<td>Apparatus Bay Window</td>
<td>Exterior paint (white) on metal window frames</td>
<td>3000</td>
</tr>
<tr>
<td>Pb-30</td>
<td>Outside Apparatus Bay</td>
<td>Exterior paint (dark brown) on metal downspouts</td>
<td>2500</td>
</tr>
<tr>
<td>Pb-31</td>
<td>Outside Apparatus Bay</td>
<td>Exterior paint (yellow) on metal siren box</td>
<td>14000</td>
</tr>
<tr>
<td>Pb-32</td>
<td>Outside Apparatus Bay</td>
<td>Exterior paint (beige) on metal bollards</td>
<td>260</td>
</tr>
<tr>
<td>Pb-33</td>
<td>Apparatus Bay</td>
<td>Paint (white) on concrete stripping</td>
<td><40</td>
</tr>
<tr>
<td>Pb-34</td>
<td>Apparatus Bay</td>
<td>Paint (yellow) on concrete stripping</td>
<td><46</td>
</tr>
<tr>
<td>Pb-35</td>
<td>Sleeping Quarters</td>
<td>Paint (off-white) on wood lockers</td>
<td>530</td>
</tr>
<tr>
<td>Pb-36</td>
<td>Corridor – Southwest</td>
<td>Paint (white) on drywall ceiling</td>
<td><39</td>
</tr>
<tr>
<td>Pb-37</td>
<td>Corridor - South</td>
<td>Paint (brown) on drywall</td>
<td>95</td>
</tr>
</tbody>
</table>

* OSHA Lead Standard for Construction (29 CFR 1926.62) applies to any detectable concentration lead in paint. Demolition or renovation of the listed components will be subject to the OSHA Lead Standard for Construction.

The OSHA Lead Standard for Construction (29 CFR 1926.62) applies to construction work where an employee may be occupationally exposed to lead. All work related to construction, alteration, or repair (including painting and decorating) is included.
APPENDIX B
LEAD ANALYTICAL LABORATORY DATA
Client: Terracon - Dallas
8901 Carpenter Freeway, Ste. 100
Dallas, TX 75247

Project/Test Address: Decommissioned Fire Station 44; Dallas, TX

Collection Date: 06/05/2018

Client Number: 45-5729

Laboratory Results

<table>
<thead>
<tr>
<th>Lab Sample Number</th>
<th>Client Sample Number</th>
<th>Collection Location</th>
<th>Pb (ug/g) ppm</th>
<th>% Pb by Wt.</th>
<th>Narrative ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-06-00748-001</td>
<td>PB-01</td>
<td></td>
<td><39</td>
<td><0.0039</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-002</td>
<td>PB-02</td>
<td></td>
<td><47</td>
<td><0.0047</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-003</td>
<td>PB-03</td>
<td></td>
<td>300</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-004</td>
<td>PB-04</td>
<td></td>
<td>88</td>
<td>0.0088</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-005</td>
<td>PB-05</td>
<td></td>
<td>1100</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-006</td>
<td>PB-06</td>
<td></td>
<td><41</td>
<td><0.0041</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-007</td>
<td>PB-07</td>
<td></td>
<td><190</td>
<td><0.019</td>
<td>L03</td>
</tr>
<tr>
<td>18-06-00748-008</td>
<td>PB-08</td>
<td></td>
<td>68</td>
<td>0.0068</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-009</td>
<td>PB-09</td>
<td></td>
<td><41</td>
<td><0.0041</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-010</td>
<td>PB-10</td>
<td></td>
<td>60</td>
<td>0.0060</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-011</td>
<td>PB-11</td>
<td></td>
<td><42</td>
<td><0.0042</td>
<td></td>
</tr>
<tr>
<td>Lab Sample Number</td>
<td>Client Sample Number</td>
<td>Collection Location</td>
<td>Pb (ug/g) ppm</td>
<td>% Pb by Wt.</td>
<td>Narrative ID</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>18-06-00748-012</td>
<td>PB-12</td>
<td></td>
<td>210</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-013</td>
<td>PB-13</td>
<td></td>
<td><40</td>
<td><0.0040</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-014</td>
<td>PB-14</td>
<td></td>
<td>240</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-015</td>
<td>PB-15</td>
<td></td>
<td>380</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-016</td>
<td>PB-16</td>
<td></td>
<td><36</td>
<td><0.0036</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-017</td>
<td>PB-17</td>
<td></td>
<td><50</td>
<td><0.0050</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-018</td>
<td>PB-18</td>
<td></td>
<td>450</td>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-019</td>
<td>PB-19</td>
<td></td>
<td>190</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-020</td>
<td>PB-20</td>
<td></td>
<td>230</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-021</td>
<td>PB-21</td>
<td></td>
<td><43</td>
<td><0.0043</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-022</td>
<td>PB-22</td>
<td></td>
<td><39</td>
<td><0.0039</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-023</td>
<td>PB-23</td>
<td></td>
<td><45</td>
<td><0.0045</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-024</td>
<td>PB-24</td>
<td></td>
<td>180</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-025</td>
<td>PB-25</td>
<td></td>
<td>1500</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-026</td>
<td>PB-26</td>
<td></td>
<td>570</td>
<td>0.057</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-027</td>
<td>PB-27</td>
<td></td>
<td><46</td>
<td><0.0046</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-028</td>
<td>PB-28</td>
<td></td>
<td><49</td>
<td><0.0049</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-029</td>
<td>PB-29</td>
<td></td>
<td>3000</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>
Analysis Method:
EPA SW846 7000B

HUD Lead Guidelines
The HUD lead guidelines for lead paint chips are 0.50% by Weight, 5000 ppm, or 1.0 mg/cm². The Reporting Limit (RL) for samples prepared by ASTM E-1979-12 is 10.0 ug Total Pb. The RL for samples prepared by EPA SW846 3050B is 25.0 ug Total Pb. Paint chip area and results are calculated based on area measurements determined by the client. All internal quality control requirements associated with this batch were met, unless otherwise noted.

Sample Narratives:
L03: Sample submitted was less than the recommended amount. A minimum of 0.1 grams should be submitted.

Reference:
The condition of the samples analyzed was acceptable upon receipt per laboratory protocol unless otherwise noted on this report. Results represent the analysis of samples submitted by the client. Sample location, description, area, etc., was provided by the client. Results reported above in mg/cm³ are calculated based on area supplied by client. This report shall not be reproduced except in full, without the written consent of the Environmental Hazards Service, L.L.C.

ELLAP Accreditation through AIHA-LAP, LLC (100420), NY ELAP #11714.

LEGEND
- Pb = lead
- ug = microgram
- ppm = parts per million
- ug/g = micrograms per gram
- Wt. = weight

Report Number:
18-06-00748

Project/Test Address:
Decommissioned Fire Station 44; Dallas, TX

<table>
<thead>
<tr>
<th>Lab Sample Number</th>
<th>Client Sample Number</th>
<th>Collection Location</th>
<th>Pb (ug/g) ppm</th>
<th>% Pb by Wt.</th>
<th>Narrative ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-06-00748-030</td>
<td>PB-30</td>
<td></td>
<td>2500</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-031</td>
<td>PB-31</td>
<td></td>
<td>14000</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-032</td>
<td>PB-32</td>
<td></td>
<td>260</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-033</td>
<td>PB-33</td>
<td></td>
<td><40</td>
<td><0.0040</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-034</td>
<td>PB-34</td>
<td></td>
<td><46</td>
<td><0.0046</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-035</td>
<td>PB-35</td>
<td></td>
<td>530</td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-036</td>
<td>PB-36</td>
<td></td>
<td><39</td>
<td><0.0039</td>
<td></td>
</tr>
<tr>
<td>18-06-00748-037</td>
<td>PB-37</td>
<td></td>
<td>95</td>
<td>0.0095</td>
<td></td>
</tr>
</tbody>
</table>

Recommended by Authorized Signatory:

Deborah Britt
QA/QC Clerk

Page 3 of 3
APPENDIX C
SITE PHOTOGRAPHS
Site Photographs
City of Dallas - Decommissioned Fire Station #44 ■ 4114 Frank Street, Dallas, Texas
July 12, 2018 ■ Terracon Project No. 94187308

Photo #1 Lead containing paint (tan) on wood crown molding (300 ppm)

Photo #2 Lead-containing paint (brown) on metal door frame (88 ppm)

Photo #3 Lead-containing paint (dark brown) on wood door (1100 ppm)

Photo #4 Lead-containing paint (tan) on drywall ceiling (68 ppm)

Photo #5 Lead-containing paint (brown) on wood paneling (60 ppm)

Photo #6 Lead-containing paint (brown) on wood roll-up door frame (210 ppm)
Photo #7 Lead-containing paint (brown) on wood ceiling deck (240 ppm)

Photo #8 Lead-containing paint (brown) on structural steel (380 ppm)

Photo #9 Lead-containing paint (red) on wood trim (450 ppm)

Photo #10 Lead-containing paint (white) on wood trim (190 ppm)

Photo #11 Lead-containing paint (black) on metal trim (230 ppm)

Photo #12 Lead-containing exterior paint (dark brown) on metal door (180 ppm)
Site Photographs
City of Dallas - Decommissioned Fire Station #44 ■ 4114 Frank Street, Dallas, Texas
July 12, 2018 ■ Terracon Project No. 94187308

Photo #13 Lead-containing exterior paint (dark brown) on metal door frame (1500 ppm)

Photo #14 Lead-containing exterior paint (dark brown) on wood overhang (570 ppm)

Photo #15 Lead-containing exterior paint (white) on metal window frame (3000 ppm)

Photo #16 Lead-containing exterior paint (dark brown) on metal downspouts (2500 ppm)

Photo #17 Lead-containing exterior paint (yellow) on metal siren box (14000 ppm)

Photo #18 Lead-containing exterior paint (beige) on metal bollard (260 ppm)
Site Photographs
City of Dallas - Decommissioned Fire Station #44 ■ 4114 Frank Street, Dallas, Texas
July 12, 2018 ■ Terracon Project No. 94187308

Photo #19 Lead-containing paint (off-white) on wood lockers (530 ppm)

Photo #20 Lead-containing paint (brown) on drywall (95 ppm)

Photo #21 Photo of presumed PCB-containing light ballast

Photo #22 Photo of "Hg-containing" light bulb

Photo #23 Photo of exterior HID lights

Photo #24 Photo of presumed CFC-containing water fountain
Site Photographs
City of Dallas - Decommissioned Fire Station #44 ■ 4114 Frank Street, Dallas, Texas
July 12, 2018 ■ Terracon Project No. 94187308

Photo #25 Photo of exterior presumed CFC-containing HVAC unit

Photo #26 Photo of smoke detector containing radioactive source and battery
APPENDIX D
SAMPLE LOCATION DRAWINGS
APPENDIX E
LICENSES AND CERTIFICATIONS
Licenses and Certifications
City of Dallas - Decommissioned Fire Station #44 ■ 4114 Frank Street, Dallas, Texas
July 12, 2018 ■ Terracon Project No. 94187308

TERRACON CONSULTANTS INC
is certified to perform as a Lead Firm in the State of Texas and is hereby governed by the rights, privileges and responsibilities set forth in Texas Occupations Code, Chapter 355 and Title 25, Texas Administrative Code, Chapter 285 relating to Texas Environmental Lead Reduction, as long as this license is not suspended or revoked.

John Helveston, M.D.
Commissioner of Health

License Number: 1101026
Control Number: 0029

Expiration Date: 7/30/2020
(Valid After Expiration Date)

VOID IF ALTERED NON-TRANSFERABLE SEE BACK

Texas Commission on Environmental Quality
NELAP-Recognized Laboratory Accreditation is hereby awarded to Environmental Hazards Services, LLC
7469 Whitepine Road
North Chesterfield, VA 23237-2261

in accordance with Texas Water Code Chapter 5, Subchapter R, Title 30 Texas Administrative Code Chapter 25, and the National Environmental Laboratory Accreditation Program.

The laboratory's scope of accreditation includes the fields of accreditation that accompany this certificate. Continued accreditation depends upon successful ongoing participation in the program. The Texas Commission on Environmental Quality urges customers to verify the laboratory's current location(s) and accreditation status for particular methods and analytes (www.tceq.texas.gov/lotl). Accreditation does not imply that a product, process, system or person is approved by the Texas Commission on Environmental Quality.

Certificate Number: T104704240-17-9
Effective Date: 1/1/2018
Expiration Date: 12/31/2018

Executive Director Texas Commission on Environmental Quality
Licenses and Certifications
City of Dallas - Decommissioned Fire Station #44 ■ 4114 Frank Street, Dallas, Texas
July 12, 2018 ■ Terracon Project No. 94187308

AIHA Laboratory Accreditation Programs, LLC

Environmental Hazards Services, LLC
7469 White Post Road, Richmond, VA 23237
Laboratory ID: 100420
along with all premises from which key activities are performed, as listed above, has fulfilled the requirements of the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC accreditation to the ISO/IEC 17025:2005 international standard, General Requirements for the Competence of Testing and Calibration Laboratories in the following:

LABORATORY ACCREDITATION PROGRAMS

✓ INDUSTRIAL HYGIENE
✓ ENVIRONMENTAL LEAD
✓ ENVIRONMENTAL MICROBIOLOGY
☐ PD00
☐ UNIQUE SCOPES
Accreditation Expires: May 01, 2020
Accreditation Expires: May 01, 2020
Accreditation Expires: May 01, 2020
Accreditation Expires:

Specific Field(s) of Testing (Procedures) within each Accreditation Program for which the above named laboratory maintains accreditation is outlined on the attached Scope of Accreditation. Continued accreditation is contingent upon successful on-going compliance with ISO/IEC 17025:2005 and AIHA-LAP, LLC requirements. This certificate is not valid without the attached Scope of Accreditation. Please review the AIHA-LAP, LLC website (www.aihaalabaccreditation.org) for the most current scope.

Elizabeth Read
Chairperson, Analytical Accreditation Board
Revision H: 05/21/2018

Cheryl G. Marone
Managing Director, AIHA Laboratory Accreditation Programs, LLC
Date Issued: 04/30/2018

TEXAS DEPARTMENT OF STATE HEALTH SERVICES

Be it known that

MATTHEW R MOONEY

is certified to perform as a

Lead Risk Assessor

in the State of Texas and is hereby governed by the rights, privileges and responsibilities set forth in Texas Occupations Code, Chapter 155 and Title 25, Texas Administrative Code, Chapter 295 relating to Texas Environmental Lead Reduction, as long as this license is not suspended or revoked.

John Hellerstedt, M.D.
Commissioner of Health

License Number: 2670895
Expiration Date: 10/22/2019
Void After Expiration Date

Control Number 7418
NON-TRANSFERABLE